12(2x+3)+12(x-3)=3(x^2-9)

Simple and best practice solution for 12(2x+3)+12(x-3)=3(x^2-9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12(2x+3)+12(x-3)=3(x^2-9) equation:



12(2x+3)+12(x-3)=3(x^2-9)
We move all terms to the left:
12(2x+3)+12(x-3)-(3(x^2-9))=0
We multiply parentheses
24x+12x-(3(x^2-9))+36-36=0
We calculate terms in parentheses: -(3(x^2-9)), so:
3(x^2-9)
We multiply parentheses
3x^2-27
Back to the equation:
-(3x^2-27)
We add all the numbers together, and all the variables
36x-(3x^2-27)=0
We get rid of parentheses
-3x^2+36x+27=0
a = -3; b = 36; c = +27;
Δ = b2-4ac
Δ = 362-4·(-3)·27
Δ = 1620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1620}=\sqrt{324*5}=\sqrt{324}*\sqrt{5}=18\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-18\sqrt{5}}{2*-3}=\frac{-36-18\sqrt{5}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+18\sqrt{5}}{2*-3}=\frac{-36+18\sqrt{5}}{-6} $

See similar equations:

| .4x=84 | | -7u+4(u+3)=33 | | -2x-4=-2x+1= | | p/3+5=2 | | x+0.6x=144 | | H=155-16t^2 | | a+6(a-8)=-5a-36 | | 2x^2-3x+4=108 | | x+3/3+x+1/4=1 | | (x+3)/3+(x+1)/4=1 | | |2n+4|=4 | | 2x-1=60 | | -5+k/4=-3 | | 48+6a=15a+15 | | (3x2)^2+5(x-3)=2x-(-4) | | 10=7x+2x-8 | | (1/9)-(2-3)b=18 | | -6m+11+7m=-2 | | u(8u-39)=5 | | −6x−13=−x−23x= | | 2x+9=12-× | | 8x+9=9x-13 | | 5x-6-4x-13=0 | | 5x+6-4x-13=0 | | -4x+35=5(5+4x)+6x | | -8x+4+20x=-6x-14 | | 100=14t+t+10 | | q/2=20;10 | | 5x-12=2x-6(2x-3) | | |6x-1|=-13 | | 8x-65+5x+6=0 | | (2x+7)=99 |

Equations solver categories